Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 116–120 (Mi znsl2573)  

An equation calculus for primitive recursive rational-valued functions

M. Kh. Fakhmi
Abstract: An equation calculus $\mathbb M$ primitive recursive functions of the positive rational argument is constructed in this paper. Among the axioms and inference roles of $\mathbb M$ there are the postulates of the primitive recursive arithmetic (ERA) by Goodstein. Logical constants $\&,\vee,\rceil,\to,\leftrightarrow,\forall_{\leq},\exists_{\leq}$ can be defined in $\mathbb M$. It is proved that $\mathbb M$ is a conservative extension of PRA.
Bibliographic databases:
Language: Russian
Citation: M. Kh. Fakhmi, “An equation calculus for primitive recursive rational-valued functions”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 116–120
Citation in format AMSBIB
\Bibitem{Fak72}
\by M.~Kh.~Fakhmi
\paper An equation calculus for primitive recursive rational-valued functions
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 116--120
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=366644}
Linking options:
  • https://www.mathnet.ru/eng/znsl2573
  • https://www.mathnet.ru/eng/znsl/v32/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024