Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 105–107 (Mi znsl2571)  

Some properties of graphs of functions in the Grzegorczyk hierarchy

S. V. Pakhomov
Abstract: Let $\Gamma^n$ be the set of all primitive recursive functions whose graphs belong to $\varepsilon^n$ [I]. It is proved that $\Gamma^n$ is the closure of $\varepsilon^n$ relative to identification and permutation of variables, to substitution of constants and to special operations I)–4) on p.p. 105–106. In particular $f_n\in\Gamma^0$ for every $n\geq 3$. Here $f_n$ is a modification of Ackermana's function described in [I] p. 30.
Bibliographic databases:
Language: Russian
Citation: S. V. Pakhomov, “Some properties of graphs of functions in the Grzegorczyk hierarchy”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 105–107
Citation in format AMSBIB
\Bibitem{Pak72}
\by S.~V.~Pakhomov
\paper Some properties of graphs of functions in the Grzegorczyk hierarchy
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 105--107
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2571}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=332461}
Linking options:
  • https://www.mathnet.ru/eng/znsl2571
  • https://www.mathnet.ru/eng/znsl/v32/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024