Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 90–97 (Mi znsl2569)  

Cut-elimination theorem for relevant logics

G. E. Mints
Abstract: Cut-elimination theorem is proved for $R^+$ that is the positive fragment of $R$ (cf. [4]) supplied with $S4$-modality and intensional conjunction. This gives a decision procedure for the $\{\rightarrow,\&,0\}$ fragment of $R$. An extension of cut-elimination theorem to the positive part of Aekermann's calculus $E$ is only sketched. The formula $[(a\to u\vee v)\&(a\to(u\to v))]\to(a\to v)$ proposed as a counterexample to the conjencture that the replacement of $A\to B$ by $N(A\to B)$ is an embedding of $E$ into $R^+$. Formula (4) is a counterexample to Anderson's conjencture: if $\rceil((A\to B)\to(C\to D))$ is provable in $E$ then $A\to B$ is too.
Bibliographic databases:
Language: Russian
Citation: G. E. Mints, “Cut-elimination theorem for relevant logics”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 90–97
Citation in format AMSBIB
\Bibitem{Min72}
\by G.~E.~Mints
\paper Cut-elimination theorem for relevant logics
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 90--97
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2569}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=344083}
Linking options:
  • https://www.mathnet.ru/eng/znsl2569
  • https://www.mathnet.ru/eng/znsl/v32/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :161
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024