Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 45–52 (Mi znsl2563)  

Metamathematical interpretation of the fan theorem

V. A. Lifshits
Abstract: Brouwer's fan theorem states that if (a) a function $f$ assigns a natural number to every element of a given fan then (b) its values depend on $N$ initial members of an argument only, where $N$ is sufficiently large. Elements are treated there as choise sequences. If one treats them as recursive functions then the statement “(a) implies (b)” is known to be false. However we prove that if (a) is provable in a certain formal system of constructive analysis which is correct with respect to the interpretation of sequences as recursive functions then (b) holds under the same interpretation.
The system is obtained from Kleene–Vesley system of intuitionistic analysis by deleting bar theorem and Brouwer principle and adding Markov's scheme.
Bibliographic databases:
Language: Russian
Citation: V. A. Lifshits, “Metamathematical interpretation of the fan theorem”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 45–52
Citation in format AMSBIB
\Bibitem{Lif72}
\by V.~A.~Lifshits
\paper Metamathematical interpretation of the fan theorem
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 45--52
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=384512}
Linking options:
  • https://www.mathnet.ru/eng/znsl2563
  • https://www.mathnet.ru/eng/znsl/v32/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024