Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 29–34 (Mi znsl2561)  

On recognizing invariant properties of algorithms

N. K. Kossovski
Abstract: Let $R$ be an enumerable class of partial recursive functions with a partial recursive universal function $u$ satisfying some general conditions (in particular (a) and (b) from Theorem I). The following theorem is a generalization of Rice's theorem.
Theorem 2. Let $A$ be any nontrivial invariant (under extensional equality) property of (Gödelnumbers relative to $u$ of) members of $R$. Then property $A$ is unrecognizable by general recursive functions from $R$.
The class of all primitive recursive functions and the Gnsegorchyk class $E^n$ (for any $n>1$) satisfy conditions of the theorem.
Bibliographic databases:
Language: Russian
Citation: N. K. Kossovski, “On recognizing invariant properties of algorithms”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 29–34
Citation in format AMSBIB
\Bibitem{Kos72}
\by N.~K.~Kossovski
\paper On recognizing invariant properties of algorithms
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 29--34
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=344091}
Linking options:
  • https://www.mathnet.ru/eng/znsl2561
  • https://www.mathnet.ru/eng/znsl/v32/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024