Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1972, Volume 32, Pages 12–17 (Mi znsl2558)  

The increase of the complexity of functions at an application of the multiple recursion

E. Ya. Dantsin
Abstract: The note deals with the hierarchy of classes $C_{\alpha}$, ($\alpha$ being an ordinal) constructed by Löb and Wainer ([I],[2]). If $\alpha<{\omega}$ then this hierarchy coincides with Grzegorczyk classification and $\bigcup_{\alpha<{\omega^k}}$ is the class of all $k$-recursive functions ($k=1,2,\dots$).
The complexity and the rate of growth of functions from $C_{\alpha}$ are characterized by the ordinal $\alpha$. In the present paper it is shown that if $\varphi$ is obtained from functions of $C_{\alpha}$, by one applicatien of the $k$-recursion, then the complexity of $\varphi$ is characterized by the ordinal $\alpha+\omega^{k-1}$, namely $\varphi$ is primitive recursive in $C_{\alpha+\omega^{k-1}}$. In particular for the primitive recursion ($k=1$) $\varphi\in C_{\alpha+1}$.
Bibliographic databases:
Language: Russian
Citation: E. Ya. Dantsin, “The increase of the complexity of functions at an application of the multiple recursion”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 12–17
Citation in format AMSBIB
\Bibitem{Dan72}
\by E.~Ya.~Dantsin
\paper The increase of the complexity of functions at an application of the multiple recursion
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 12--17
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2558}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=344101}
Linking options:
  • https://www.mathnet.ru/eng/znsl2558
  • https://www.mathnet.ru/eng/znsl/v32/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024