Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 331, Pages 30–42 (Mi znsl248)  

This article is cited in 8 scientific papers (total in 8 papers)

Quantization of theories with non-Lagrangian equations of motion

D. M. Gitmana, V. G. Kupriyanovb

a Universidade de São Paulo
b Tomsk State University
Full-text PDF (170 kB) Citations (8)
References:
Abstract: We present an approach to the canonical quantization of systems with non-Lagrangian equations of motion. We first construct an action principle for an equivalent first-order equations of motion. A hamiltonization and canonical quantization of the constructed Lagrangian theory is a non-trivial problem, since this theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories (Gitman, Tyutin, 1990) to the case under consideration. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with the given set of equations. We give a complete description of this ambiguity. It is remarkable that the quantization scheme developed in the case under consideration provides arguments in favor of fixing this ambiguity. Finally, as an example, we consider the canonical quantization of a general quadratic theory.
Received: 10.04.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 4, Pages 1399–1406
DOI: https://doi.org/10.1007/s10958-007-0047-z
Bibliographic databases:
UDC: 517.958
Language: English
Citation: D. M. Gitman, V. G. Kupriyanov, “Quantization of theories with non-Lagrangian equations of motion”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIV, Zap. Nauchn. Sem. POMI, 331, POMI, St. Petersburg, 2006, 30–42; J. Math. Sci. (N. Y.), 141:4 (2007), 1399–1406
Citation in format AMSBIB
\Bibitem{GitKup06}
\by D.~M.~Gitman, V.~G.~Kupriyanov
\paper Quantization of theories with non-Lagrangian equations of motion
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XIV
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 331
\pages 30--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl248}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251340}
\zmath{https://zbmath.org/?q=an:1099.53060}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 4
\pages 1399--1406
\crossref{https://doi.org/10.1007/s10958-007-0047-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846798351}
Linking options:
  • https://www.mathnet.ru/eng/znsl248
  • https://www.mathnet.ru/eng/znsl/v331/p30
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :93
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024