Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 263–271 (Mi znsl2414)  

A pseudo-rundamental sequence not equivalent to any monotone sequence

G. S. Tseitin
Abstract: An algorithmic sequence $\varphi$ of rational numbers is called pseudo-fundamental if
$$ \forall m\rceil\rceil\exists n\forall kl(k>n\& l>n\supset|\varphi_k-\varphi_l|<2^{-m}). $$
Two sequences $\varphi$ and $\psi$ are called equivalent if
$$ \forall m\rceil\rceil\exists n\forall l(l>n\supset|\varphi_l-\psi_l|<2^{-m}). $$

A pseudo-fundamental sequence is constructed that is not equivalent to any monotonous sequence (it is the difference of two bounded increasing sequences). The construction is based on two recursively enumerable sets with incomparable degrees of unsolvability or on a weaker result proved independently.
Bibliographic databases:
Language: Russian
Citation: G. S. Tseitin, “A pseudo-rundamental sequence not equivalent to any monotone sequence”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 263–271
Citation in format AMSBIB
\Bibitem{Tse71}
\by G.~S.~Tseitin
\paper A~pseudo-rundamental sequence not equivalent to any monotone sequence
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 263--271
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288025}
\zmath{https://zbmath.org/?q=an:0222.02046}
Linking options:
  • https://www.mathnet.ru/eng/znsl2414
  • https://www.mathnet.ru/eng/znsl/v20/p263
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024