Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 234–242 (Mi znsl2412)  

This article is cited in 1 scientific paper (total in 2 paper)

A reduced form of normal algorithms and a linear speed-up theorem

G. S. Tseitin
Full-text PDF (426 kB) Citations (2)
Abstract: A special class of normal algorithms i s defined wlth the property that if the initial word contains no occurrences of letters from a specified “operating alphabet” then each intermediate word contains exactly one such occrurrence and all replacements occur around those occurrences. The main result is that for any normal algorithm $\mathfrak M$ an equivalent algorithm $\mathfrak N$ of that class can be constructed such that for any word $P$
$$ t_{\mathfrak N}(P)\leq C_1\cdot t_{\mathfrak M}(P)+C_2\cdot|P|+C_3 $$
provided that $\mathfrak M(P)$ is defined, $t_{\mathfrak M}$ and $t_{\mathfrak N}$ denoting the respective number-of-steps functions and $|P|$ the length of $P$. A corollary is proved where the constants $C_1$ and $C_2$ are replaced by arbitrarily small positive number.
Bibliographic databases:
Language: Russian
Citation: G. S. Tseitin, “A reduced form of normal algorithms and a linear speed-up theorem”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 234–242
Citation in format AMSBIB
\Bibitem{Tse71}
\by G.~S.~Tseitin
\paper A~reduced form of normal algorithms and a~linear speed-up theorem
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 234--242
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289306}
\zmath{https://zbmath.org/?q=an:0222.02024}
Linking options:
  • https://www.mathnet.ru/eng/znsl2412
  • https://www.mathnet.ru/eng/znsl/v20/p234
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :169
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024