Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 220–233 (Mi znsl2411)  

Regular approximations to the recursive predicates

R. I. Freidson
Abstract: By machines we mean Turing machines, idealized computer programs, or any idealized devices for computing the recursive functions. The machines and their size must satisfy the axioms of M. Blum. Let $\Phi$ be a total recursive function and $S$ a recursive predicate which is so complex that any machine computing $S(n)$ takes more than $\Phi(n)$ steps to do so for infinitely many $n$. A sequence of machines $M_1,M_2,\dots,M_n,\dots$ will be called a $\Phi$-bounded approximation to the recursive predicate $S$ if for each $n$ machine $M_n$ computes $S(x)$ for $x\leq n$ and takes no more than $\Phi(x)$ steps to do so. As a measure of the complexity of such approximation let us take the function which value on ft is the size of machine $M_n$. One of the possible approaches to make the general problem of bounded approximation more precise is considered and some results concerning the compexity of such approximations are stated. The case when limitations on the complexity of computation force the members of approximating sequence to degenerate into finite-state machines is studied more carefully.
Bibliographic databases:
Language: Russian
Citation: R. I. Freidson, “Regular approximations to the recursive predicates”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 220–233
Citation in format AMSBIB
\Bibitem{Fre71}
\by R.~I.~Freidson
\paper Regular approximations to the recursive predicates
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 220--233
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289308}
\zmath{https://zbmath.org/?q=an:0222.02042}
Linking options:
  • https://www.mathnet.ru/eng/znsl2411
  • https://www.mathnet.ru/eng/znsl/v20/p220
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024