Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 200–207 (Mi znsl2409)  

A property of recursively enumerable sets containing “hardly deducible” formulas

A. O. Slisenko
Abstract: There are considered recursively enumerable sets of formulas of the predicate calculus with the following property: for any sufficiently large $n$ there exists a formula in such a set, whose complexity of establishing of deducibility is maximal among all deducible formulas having the length $\leq n$. The article contains a low bound for some characteristic of density of such sets.
Bibliographic databases:
Language: Russian
Citation: A. O. Slisenko, “A property of recursively enumerable sets containing “hardly deducible” formulas”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 200–207
Citation in format AMSBIB
\Bibitem{Sli71}
\by A.~O.~Slisenko
\paper A~property of recursively enumerable sets containing ``hardly deducible'' formulas
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 200--207
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289310}
\zmath{https://zbmath.org/?q=an:0222.02045}
Linking options:
  • https://www.mathnet.ru/eng/znsl2409
  • https://www.mathnet.ru/eng/znsl/v20/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024