Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 115–133 (Mi znsl2402)  

This article is cited in 1 scientific paper (total in 1 paper)

Quantifier-free and one-quantifier systems

G. E. Mints
Full-text PDF (919 kB) Citations (1)
Abstract: There are considered formulas of classical first order arithmetic $Z$ with primitive recursive functions. The complexity of a formula is its quantifier-depth, that is the maximal number of changes of quantifiers governing each other. So the complexity of $\&_i(\exists x_iR_i\vee\forall y_iS_i)$, $R_i,S_i$ being quantifier-free, is $0$. $Z_n$ is $n$-truncation of $Z$ (only formulas of complexity $\leq n$ are permitted in Sequenzen-deductions). It is proved that $Z_0$ is a conservative extension of PRA (primitive recursive arithmetic). The proof gives a characterization of primitive recursive functions. These are precisely function provably recursive in the arithmetical system constructed from free variable arithmetic of Kalmar-elementary function in the same way as $Z_0$ is constructed from PRA.
Bibliographic databases:
Language: Russian
Citation: G. E. Mints, “Quantifier-free and one-quantifier systems”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 115–133
Citation in format AMSBIB
\Bibitem{Min71}
\by G.~E.~Mints
\paper Quantifier-free and one-quantifier systems
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 115--133
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289295}
\zmath{https://zbmath.org/?q=an:0222.02022}
Linking options:
  • https://www.mathnet.ru/eng/znsl2402
  • https://www.mathnet.ru/eng/znsl/v20/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024