|
Zapiski Nauchnykh Seminarov POMI, 2006, Volume 333, Pages 43–53
(Mi znsl240)
|
|
|
|
Characterizations of Hardy–Orlicz and Bergman–Orlicz spaces
E. Doubtsov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\widetilde\nabla$ и $\tau$ denote the invariant gradient and invariant measure on the unit ball $B$ of $\mathbb C^n$, respectively. Assume that $f$ is a holomorphic function on $B$ and $\varphi\in C^2 ({\mathbb R})$ is a nonnegative nondecreasing convex function. Then $f$ is in the Hardy–Orlicz space $H_\varphi(B)$ if and only if
$$
\int_B\varphi''(\log|f(z)|)\frac{|\widetilde\nabla f(z)|^2}{|f(z)|^2}(1-|z|^2)^n\,d\tau(z)<\infty.
$$
Analogous characterizations of Bergman–Orlicz spaces are obtained.
Received: 07.05.2006
Citation:
E. Doubtsov, “Characterizations of Hardy–Orlicz and Bergman–Orlicz spaces”, Investigations on linear operators and function theory. Part 34, Zap. Nauchn. Sem. POMI, 333, POMI, St. Petersburg, 2006, 43–53; J. Math. Sci. (N. Y.), 141:5 (2007), 1531–1537
Linking options:
https://www.mathnet.ru/eng/znsl240 https://www.mathnet.ru/eng/znsl/v333/p43
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 69 | References: | 26 |
|