Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 60–66 (Mi znsl2397)  

On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy

N. K. Kossovski
Abstract: It is proved that for any recursive sequence $f$ there exists a sequence $g$ of Grzegorczyk class $E^0$ such that $g(0),g(1),\dots$ is obtained from $f(0),f(1),\dots$ by replacing some members $f(i)$ by finite sequences $f(i),\dots,f(i)$.
This implies that every recursively convergent recursive sequence of rational numbers can be represented by a functions from $E^0$.
Bibliographic databases:
Language: Russian
Citation: N. K. Kossovski, “On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 60–66
Citation in format AMSBIB
\Bibitem{Kos71}
\by N.~K.~Kossovski
\paper On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 60--66
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=297569}
\zmath{https://zbmath.org/?q=an:0222.02028}
Linking options:
  • https://www.mathnet.ru/eng/znsl2397
  • https://www.mathnet.ru/eng/znsl/v20/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024