Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 40–48 (Mi znsl2395)  

This article is cited in 5 scientific papers (total in 5 papers)

On realizations of predicate formulas

M. M. Kipnis
Full-text PDF (465 kB) Citations (5)
Abstract: In view of Nelson's theorem for every intuitionistically derivable predicate formula there is a number realizing all its closed arithmetical substitution iastances (but not only a partial recursive function transforming every arithmetical substitution into some realization of the corresponding substitution instance). It is proved in this note that such uniform realization exists for every realizable predicate formula if substituted predicates are of bounded complexity. More precisely: for every closed predicate formula $A$, every partial recursive function realizing $A$ and every natural $k$ it is possible to construct a natural number realizing every substitution in $A$ of predicates of class $\Pi_m$ ($m\leq k$) or $\Sigma_m$ ($m\leq k$). Here $\Pi_m$ is the class of all formulas of the form $\exists e\forall x_m\rceil\forall x_{m-1}\rceil\forall x_{m-2}\dots\rceil\forall x_1R$ and $\Sigma_m$ is the class of a l l formulas of the form $\exists e\rceil\forall x_m\rceil\forall x_{m-1}\dots\rceil\forall x_1R$.
Bibliographic databases:
Language: Russian
Citation: M. M. Kipnis, “On realizations of predicate formulas”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 40–48
Citation in format AMSBIB
\Bibitem{Kip71}
\by M.~M.~Kipnis
\paper On realizations of predicate formulas
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 40--48
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=292674}
\zmath{https://zbmath.org/?q=an:0222.02021}
Linking options:
  • https://www.mathnet.ru/eng/znsl2395
  • https://www.mathnet.ru/eng/znsl/v20/p40
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024