Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 36–39 (Mi znsl2394)  

Yet another constructive version of Cauchy theorem

I. D. Zaslavsky, G. S. Tseitin
Abstract: Let $(x::y)$, $x$ and $y$ standing for constructive real numbers, denotes the open interval $(min(x,y),max(x,y))$. The following theorem is proved. Let two constructive functions $f$ and $g$ be defined respectively on segments $[x_1,x_2]$ and $[y_1,y_2]$ and let the intervals $(f(x_1)::f(x_2))$ and $(g(x_1)::g(x_2))$ have a point in common. Then an $x$ from $[x_1,x_2]$ and аn $y$ from $[y_1,y_2]$ can be found so that $f(x)=g(y)$.
Bibliographic databases:
Language: Russian
Citation: I. D. Zaslavsky, G. S. Tseitin, “Yet another constructive version of Cauchy theorem”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 36–39
Citation in format AMSBIB
\Bibitem{ZasTse71}
\by I.~D.~Zaslavsky, G.~S.~Tseitin
\paper Yet another constructive version of Cauchy theorem
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 36--39
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=297932}
\zmath{https://zbmath.org/?q=an:0222.02031}
Linking options:
  • https://www.mathnet.ru/eng/znsl2394
  • https://www.mathnet.ru/eng/znsl/v20/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024