|
Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 36–39
(Mi znsl2394)
|
|
|
|
Yet another constructive version of Cauchy theorem
I. D. Zaslavsky, G. S. Tseitin
Abstract:
Let $(x::y)$, $x$ and $y$ standing for constructive real numbers, denotes the open interval $(min(x,y),max(x,y))$. The following theorem is proved. Let two constructive functions $f$ and $g$ be defined respectively on segments $[x_1,x_2]$ and $[y_1,y_2]$ and let the intervals $(f(x_1)::f(x_2))$ and $(g(x_1)::g(x_2))$ have a point in common. Then an $x$ from $[x_1,x_2]$ and аn $y$ from $[y_1,y_2]$ can be found so that $f(x)=g(y)$.
Citation:
I. D. Zaslavsky, G. S. Tseitin, “Yet another constructive version of Cauchy theorem”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 36–39
Linking options:
https://www.mathnet.ru/eng/znsl2394 https://www.mathnet.ru/eng/znsl/v20/p36
|
Statistics & downloads: |
Abstract page: | 197 | Full-text PDF : | 69 |
|