Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1971, Volume 20, Pages 8–23 (Mi znsl2392)  

This article is cited in 1 scientific paper (total in 1 paper)

On a class of realizable propositional formulas

F. L. Varpakhovskii
Full-text PDF (744 kB) Citations (1)
Abstract: Propositional formula is called regularly realizable if there exists a number realizing (in Kleene's sense) every closed, arithmetical substitution instance of the formula. In this paper there is constructed a class $R$ of propositional formulas with the following properties: I) $R$ contains all intuitionistically derivable propositional formulas and is closed relative to rules of intuitionistic propositional calculus; 2) $R$ is recursively decidable; 3) every formula of $R$ is regularly realizable.
All realizable propositional formulas known to the author are contained in $R$.
Bibliographic databases:
Language: Russian
Citation: F. L. Varpakhovskii, “On a class of realizable propositional formulas”, Studies in constructive mathematics and mathematical logic. Part IV, Zap. Nauchn. Sem. LOMI, 20, "Nauka", Leningrad. Otdel., Leningrad, 1971, 8–23
Citation in format AMSBIB
\Bibitem{Var71}
\by F.~L.~Varpakhovskii
\paper On a~class of realizable propositional formulas
\inbook Studies in constructive mathematics and mathematical logic. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1971
\vol 20
\pages 8--23
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=289258}
\zmath{https://zbmath.org/?q=an:0222.02020}
Linking options:
  • https://www.mathnet.ru/eng/znsl2392
  • https://www.mathnet.ru/eng/znsl/v20/p8
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024