Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 333, Pages 33–42 (Mi znsl239)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimation of maximal distances between spaces with norms invariant under a group of operators

F. L. Bakharev

Saint-Petersburg State University
Full-text PDF (223 kB) Citations (1)
References:
Abstract: We consider the class $A_\Gamma$ of $n$-dimensional normed spaces with unit balls of the form: $B_U=\operatorname{conv}\bigcup\limits_{\gamma\in\Gamma}\gamma(B^1_n\cup U(B^1_n))$, where $B^1_n$ is the unit ball of $\ell^1_n$, $\Gamma$ is a finite group of orthogonal operators acting in ${\mathbb R}^n$, and $U$ is a “random” orthogonal transformation.
It is proved that this class contains spaces with a large Banach–Mazur distance between them. If the cardinality of $\Gamma$ is of order $n^c$, it is shown that, in the power scale, the diameter of $A_\Gamma$ in the modified Banach–Mazur distance behaves as the classical diameter and is of the order $n$.
Received: 12.03.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 5, Pages 1526–1530
DOI: https://doi.org/10.1007/s10958-007-0058-9
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: F. L. Bakharev, “Estimation of maximal distances between spaces with norms invariant under a group of operators”, Investigations on linear operators and function theory. Part 34, Zap. Nauchn. Sem. POMI, 333, POMI, St. Petersburg, 2006, 33–42; J. Math. Sci. (N. Y.), 141:5 (2007), 1526–1530
Citation in format AMSBIB
\Bibitem{Bak06}
\by F.~L.~Bakharev
\paper Estimation of maximal distances between spaces with norms invariant under a~group of operators
\inbook Investigations on linear operators and function theory. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 333
\pages 33--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl239}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2253615}
\zmath{https://zbmath.org/?q=an:1109.46015}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 5
\pages 1526--1530
\crossref{https://doi.org/10.1007/s10958-007-0058-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846979141}
Linking options:
  • https://www.mathnet.ru/eng/znsl239
  • https://www.mathnet.ru/eng/znsl/v333/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :55
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024