Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 333, Pages 17–32 (Mi znsl238)  

This article is cited in 1 scientific paper (total in 1 paper)

Generalization of some classical results to the case of the modified Banach–Mazur distance

F. L. Bakharev

Saint-Petersburg State University
Full-text PDF (243 kB) Citations (1)
References:
Abstract: The paper is devoted to generalization of some classical results about the Banach–Mazur distance to the modified Banach–Mazur distance. The existense of a space uniformly distant in the modified Banach–Mazur distance from all spaces with small basis constant and a space distant in the modified metric from all spaces admitting complex structure is proved. The existense of a real space admitting two complex structures distant in the sense of the complex modified distance is established. The existense of a space having big generalized volume ratio with all of its subspaces of proportional dimension is shown.
Received: 13.05.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 5, Pages 1517–1525
DOI: https://doi.org/10.1007/s10958-007-0057-x
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: F. L. Bakharev, “Generalization of some classical results to the case of the modified Banach–Mazur distance”, Investigations on linear operators and function theory. Part 34, Zap. Nauchn. Sem. POMI, 333, POMI, St. Petersburg, 2006, 17–32; J. Math. Sci. (N. Y.), 141:5 (2007), 1517–1525
Citation in format AMSBIB
\Bibitem{Bak06}
\by F.~L.~Bakharev
\paper Generalization of some classical results to the case of the modified Banach--Mazur distance
\inbook Investigations on linear operators and function theory. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 333
\pages 17--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2253614}
\zmath{https://zbmath.org/?q=an:1109.46014}
\elib{https://elibrary.ru/item.asp?id=9172513}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 5
\pages 1517--1525
\crossref{https://doi.org/10.1007/s10958-007-0057-x}
\elib{https://elibrary.ru/item.asp?id=13558643}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846990138}
Linking options:
  • https://www.mathnet.ru/eng/znsl238
  • https://www.mathnet.ru/eng/znsl/v333/p17
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :108
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024