|
Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 246–266
(Mi znsl236)
|
|
|
|
Mixed boundary-value problems for singular second-order ordinary differential equations
M. N. Yakovlev St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is proved that the boundary-value problem
\begin{gather*}
-u''+p_0(t)u(t)+\sum^m_{k=2}q_k(t) u^{2k+1}(t)+f_0(t)\varphi(u(t))=f(t), \quad 0<t<1,
\\
u(a)=0, \quad u'(b)=0,
\end{gather*}
has a solution, provided that the following conditions are fulfilled:
\begin{gather*}
|p_0(t)|(t-a)\in L(a,b), \quad f(t)\sqrt{t-a}\in L(a,b),
\\
0\le f_0(t)\sqrt{t-a}\in L(a,b), \quad 0\le q_k(t)(t-a)^{k+1}\in L(a,b),
\\
-c|u|\le\varphi(u)u, \quad c>0,
\\
1-\int^b_a p^-_0(t)(t-a)\,dt>0,
\end{gather*}
and, for $\varphi(u)\equiv 0$, the Galerkin method converges in the norm of the space $H^1(a,b;a)$. Several theorems of a similar kind are presented.
Received: 15.06.2006
Citation:
M. N. Yakovlev, “Mixed boundary-value problems for singular second-order ordinary differential equations”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 246–266; J. Math. Sci. (N. Y.), 141:6 (2007), 1710–1722
Linking options:
https://www.mathnet.ru/eng/znsl236 https://www.mathnet.ru/eng/znsl/v334/p246
|
Statistics & downloads: |
Abstract page: | 162 | Full-text PDF : | 40 | References: | 35 |
|