Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 233–245 (Mi znsl235)  

This article is cited in 3 scientific papers (total in 3 papers)

The first boundary-value problem for a singular nonlinear ordinary differential equation of fourth order

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (176 kB) Citations (3)
References:
Abstract: The solvability of the boundary-value problem
\begin{gather*} u^{(4)}-(p_1(t)u')'-(p_2(t)[u']^{2k+1})'+p_0(t)u+f_0(t)\varphi(u)+f_1(t)u^{2m+1}=f(t), \enskip 0<t<1, \\ u(0)=u'(0)=u(1)=u'(1)=0, \end{gather*}
in the space $H^2_0(0,1)$ is proved under the following assumptions: $p_0(t)t^3(1-t)^3\in L(0,1)$, $p_1(t)t(1-t)\in L(0,1)$, $f(t)t^{3/2}(1-t)^{3/2}\in L(0,1)$, $0\le p_2(t)[t(1-t)]^{k+1}\in L(0,1)$, $0\le f_0(t)[t(1-t)]^{3/2}\in L(0,1)$, $0\le f_1(t)[t(1-t)]^{3m+3}\in L(0,1)$, $\varphi(u)u\ge-c|u|$, $c>0$,
$$ 1-\int^1_0p^-_1(t)t(1-t)dt-\frac13\int^1_0p^-_0(t)t^3(1-t)^3\,dt>0. $$
Received: 07.06.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 6, Pages 1702–1709
DOI: https://doi.org/10.1007/s10958-007-0081-x
Bibliographic databases:
UDC: 512
Language: Russian
Citation: M. N. Yakovlev, “The first boundary-value problem for a singular nonlinear ordinary differential equation of fourth order”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 233–245; J. Math. Sci. (N. Y.), 141:6 (2007), 1702–1709
Citation in format AMSBIB
\Bibitem{Yak06}
\by M.~N.~Yakovlev
\paper The first boundary-value problem for a~singular nonlinear ordinary differential equation of fourth order
\inbook Computational methods and algorithms. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 334
\pages 233--245
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270920}
\zmath{https://zbmath.org/?q=an:1119.34308}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 6
\pages 1702--1709
\crossref{https://doi.org/10.1007/s10958-007-0081-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846984316}
Linking options:
  • https://www.mathnet.ru/eng/znsl235
  • https://www.mathnet.ru/eng/znsl/v334/p233
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :54
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024