Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 128–148 (Mi znsl228)  

This article is cited in 1 scientific paper (total in 1 paper)

Filling the gap between the Gerschgorin and Brualdi theorems

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (264 kB) Citations (1)
References:
Abstract: The paper presents new diagonal dominance type nonsingularity conditions for $n\times n$ matrices formulated in terms of circuits of length not exceeding a fixed number $r\ge 0$ and simple paths of length $r$ in the digraph of the matrix. These conditions are intermediate between the diagonal dominance conditions in terms of all paths of length $r$ and Brualdi's diagonal dominance conditions, involving all the circuits. For $r=0$, the new conditions reduce to the standard row diagonal dominance conditions $|a_{ii}|\ge\sum\limits_{j\ne i}|a_{ij}|$, $i=1,\dots,n$, whereas for $r=n$ they coincide with the Brualdi circuit conditions. Thus, they connect the classical Lévy–Desplanques theorem and the Brualdi theorem, yielding a family of sufficient nonsingularity conditions. Further, for irreducible matrices satisfying the new diagonal dominance conditions with nonstrict inequalities, the singularity/nonsingularity problem is solved. Also the new sufficient diagonal dominance conditions are extended to the so-called mixed conditions, simultaneously involving the deleted row and column sums of an arbitrary finite set of matrices diagonally conjugated to a given one, which, in the simplest nontrivial case, reduce to the old-known Ostrowski conditions $|a_{ii}|>(\sum\limits_{j\ne i}|a_{ij}|)^\alpha\;(\sum\limits_{j\ne i} |a_{ji}|)^{1-\alpha}$, $i=1,\dots,n$, $0\le\alpha\le 1$. The nonsingularity conditions obtained are used to provide new eigenvalue inclusion sets, depending on $r$, which, as $r$ varies from 0 to $n$, serve as a bridge connecting the union of Gerschgorin's disks with the Brualdi inclusion set.
Received: 28.04.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 6, Pages 1643–1653
DOI: https://doi.org/10.1007/s10958-007-0074-9
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Filling the gap between the Gerschgorin and Brualdi theorems”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 128–148; J. Math. Sci. (N. Y.), 141:6 (2007), 1643–1653
Citation in format AMSBIB
\Bibitem{Kol06}
\by L.~Yu.~Kolotilina
\paper Filling the gap between the Gerschgorin and Brualdi theorems
\inbook Computational methods and algorithms. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 334
\pages 128--148
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270913}
\zmath{https://zbmath.org/?q=an:1120.15015}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 6
\pages 1643--1653
\crossref{https://doi.org/10.1007/s10958-007-0074-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846988680}
Linking options:
  • https://www.mathnet.ru/eng/znsl228
  • https://www.mathnet.ru/eng/znsl/v334/p128
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :127
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024