|
Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 78–83
(Mi znsl224)
|
|
|
|
On rank-one corrections of complex symmetric matrices
M. Danaa, Kh. D. Ikramovb a University of Kurdistan
b M. V. Lomonosov Moscow State University
Abstract:
Let a matrix $A\in M_n(\mathbf C)$ be a rank-one perturbation of a complex symmetric matrix, i.e. $A=X+Y$ for some unknown matrices $X$ and $Y$ such that $X=X^T$ and $\mathrm{rank}\,Y=1$. The problem of determining the matrices $X$ and $Y$ is solved.
Received: 16.01.2005
Citation:
M. Dana, Kh. D. Ikramov, “On rank-one corrections of complex symmetric matrices”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 78–83; J. Math. Sci. (N. Y.), 141:6 (2007), 1614–1617
Linking options:
https://www.mathnet.ru/eng/znsl224 https://www.mathnet.ru/eng/znsl/v334/p78
|
Statistics & downloads: |
Abstract page: | 273 | Full-text PDF : | 80 | References: | 52 |
|