Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 78–83 (Mi znsl224)  

On rank-one corrections of complex symmetric matrices

M. Danaa, Kh. D. Ikramovb

a University of Kurdistan
b M. V. Lomonosov Moscow State University
References:
Abstract: Let a matrix $A\in M_n(\mathbf C)$ be a rank-one perturbation of a complex symmetric matrix, i.e. $A=X+Y$ for some unknown matrices $X$ and $Y$ such that $X=X^T$ and $\mathrm{rank}\,Y=1$. The problem of determining the matrices $X$ and $Y$ is solved.
Received: 16.01.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 6, Pages 1614–1617
DOI: https://doi.org/10.1007/s10958-007-0070-0
Bibliographic databases:
UDC: 512
Language: Russian
Citation: M. Dana, Kh. D. Ikramov, “On rank-one corrections of complex symmetric matrices”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 78–83; J. Math. Sci. (N. Y.), 141:6 (2007), 1614–1617
Citation in format AMSBIB
\Bibitem{DanIkr06}
\by M.~Dana, Kh.~D.~Ikramov
\paper On rank-one corrections of complex symmetric matrices
\inbook Computational methods and algorithms. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 334
\pages 78--83
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270909}
\zmath{https://zbmath.org/?q=an:05161407}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 6
\pages 1614--1617
\crossref{https://doi.org/10.1007/s10958-007-0070-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846992733}
Linking options:
  • https://www.mathnet.ru/eng/znsl224
  • https://www.mathnet.ru/eng/znsl/v334/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :82
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024