Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 68–77 (Mi znsl223)  

This article is cited in 3 scientific papers (total in 3 papers)

Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited

M. Danaa, Kh. D. Ikramovb

a University of Kurdistan
b M. V. Lomonosov Moscow State University
Full-text PDF (155 kB) Citations (3)
References:
Abstract: MINRES-N is a minimal residual algorithm originally developed by the authors for solving systems of linear equations with normal coefficient matrices whose spectra lie on algebraic curves of low degree. In a previous publication, the authors showed that a variant of MINRES-N called MINRES-N2 is applicable to nonnormal matrices $A$ for which
$$ \mathrm{rank}\,(A-A^*)=1. $$
This fact is extended to nonnormal matrices $A$ such that
$$ \mathrm{rank}\,(A-A^*)=k, \qquad k\ge1. $$
Received: 16.01.2005
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 6, Pages 1608–1613
DOI: https://doi.org/10.1007/s10958-007-0069-6
Bibliographic databases:
UDC: 512
Language: Russian
Citation: M. Dana, Kh. D. Ikramov, “Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 68–77; J. Math. Sci. (N. Y.), 141:6 (2007), 1608–1613
Citation in format AMSBIB
\Bibitem{DanIkr06}
\by M.~Dana, Kh.~D.~Ikramov
\paper Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
\inbook Computational methods and algorithms. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 334
\pages 68--77
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270908}
\zmath{https://zbmath.org/?q=an:05161406}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 6
\pages 1608--1613
\crossref{https://doi.org/10.1007/s10958-007-0069-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846994442}
Linking options:
  • https://www.mathnet.ru/eng/znsl223
  • https://www.mathnet.ru/eng/znsl/v334/p68
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :109
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024