Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 334, Pages 57–67 (Mi znsl222)  

This article is cited in 5 scientific papers (total in 6 papers)

Compactness of the congruence group of measurable functions in several variables

A. M. Vershika, U. Haböckb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b University of Vienna
Full-text PDF (200 kB) Citations (6)
References:
Abstract: We solve a problem, which appears in functional analysis and geometry, on the group of symmetries of functions of several arguments. Let $f\colon\prod_{i=1}^n X_i\longrightarrow Z$ be a measurable function defined on the product of finitely many standard probability spaces $(X_i,\frak B_i,\mu_i)$, $1\le i\le n$, that takes values in any standard Borel space $Z$. We consider the Borel group of all $n$-tuples $(g_1,\dots,g_n)$ of measure preserving automorphisms of the respective spaces $(X_i,\frak B_i,\mu_i)$ such that $f(g_1x_1,\dots,g_nx_n)=f(x_1,\dots,x_n)$ almost everywhere and prove that this group is compact, provided that its ‘trivial’ symmetries are factored out. As a consequence, we are able to characterise all groups that result in such a way. This problem appears with the question of classifying measurable functions in several variables, which has been solved in [2] but is interesting in itself.
Received: 09.10.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 141, Issue 6, Pages 1601–1607
DOI: https://doi.org/10.1007/s10958-007-0068-7
Bibliographic databases:
UDC: 519.2
Language: English
Citation: A. M. Vershik, U. Haböck, “Compactness of the congruence group of measurable functions in several variables”, Computational methods and algorithms. Part XIX, Zap. Nauchn. Sem. POMI, 334, POMI, St. Petersburg, 2006, 57–67; J. Math. Sci. (N. Y.), 141:6 (2007), 1601–1607
Citation in format AMSBIB
\Bibitem{VerHab06}
\by A.~M.~Vershik, U.~Hab\"ock
\paper Compactness of the congruence group of measurable functions in several variables
\inbook Computational methods and algorithms. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 334
\pages 57--67
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270907}
\elib{https://elibrary.ru/item.asp?id=9304139}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 141
\issue 6
\pages 1601--1607
\crossref{https://doi.org/10.1007/s10958-007-0068-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846959194}
Linking options:
  • https://www.mathnet.ru/eng/znsl222
  • https://www.mathnet.ru/eng/znsl/v334/p57
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :71
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024