Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 362, Pages 337–363 (Mi znsl2202)  

This article is cited in 1 scientific paper (total in 1 paper)

Two-phase Stefan problem with vanishing specific heat

E. V. Frolova

Saint-Petersburg State Electrotechnical University
Full-text PDF (309 kB) Citations (1)
References:
Abstract: We prove the unique solvability of the two-phase Stefan problem with a small parameter $\varepsilon\in[0;\varepsilon_0]$ at the time derivative in the heat equations. The solution is obtained on a certain time interval $[0;t_0]$ independent of $\varepsilon$. We compare the solution of the Stefan problem with the solution to the Hele–Shaw problem corresponding to the case $\varepsilon=0$. We do not assume that the solutions of both problems coincide at the initial moment of time. Bibl. – 18 titles.
Received: 16.12.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 4, Pages 580–595
DOI: https://doi.org/10.1007/s10958-009-9463-6
Bibliographic databases:
UDC: 517
Language: English
Citation: E. V. Frolova, “Two-phase Stefan problem with vanishing specific heat”, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Zap. Nauchn. Sem. POMI, 362, POMI, St. Petersburg, 2008, 337–363; J. Math. Sci. (N. Y.), 159:4 (2009), 580–595
Citation in format AMSBIB
\Bibitem{Fro08}
\by E.~V.~Frolova
\paper Two-phase Stefan problem with vanishing specific heat
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 362
\pages 337--363
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2202}
\zmath{https://zbmath.org/?q=an:1180.80053}
\elib{https://elibrary.ru/item.asp?id=13759355}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 159
\issue 4
\pages 580--595
\crossref{https://doi.org/10.1007/s10958-009-9463-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349228867}
Linking options:
  • https://www.mathnet.ru/eng/znsl2202
  • https://www.mathnet.ru/eng/znsl/v362/p337
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :110
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024