Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 362, Pages 303–324 (Mi znsl2200)  

The nonlinear $N$-membranes evolution problem

J. F. Rodriguesa, L. Santosb, J. M. Urbanoc

a Center of Mathematics and Fundamental Applications, Department of Mathematics, University of Lisbon
b Center of Mathematics and Fundamental Applications, Department of Mathematics, University of Minho
c Center for Mathematics, Department of Mathematics, University of Coimbra
References:
Abstract: The parabolic $N$-membranes problem for the $p$-Laplacian and the complete order constraint on the components of the solution is studied in what concerns the approximation, the regularity and the stability of the variational solutions. We extend to the evolutionary case the characterization of the Lagrange multipliers associated with the ordering constraint in terms of the characteristic functions of the coincidence sets. We give continuous dependence results, and study the asymptotic behavior as $t\to\infty$ of the solution and the coincidence sets, showing that they converge to their stationary counterparts. Bibl. – 22 titles.
Received: 12.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 4, Pages 559–572
DOI: https://doi.org/10.1007/s10958-009-9461-8
Bibliographic databases:
UDC: 517
Language: English
Citation: J. F. Rodrigues, L. Santos, J. M. Urbano, “The nonlinear $N$-membranes evolution problem”, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Zap. Nauchn. Sem. POMI, 362, POMI, St. Petersburg, 2008, 303–324; J. Math. Sci. (N. Y.), 159:4 (2009), 559–572
Citation in format AMSBIB
\Bibitem{RodSanUrb08}
\by J.~F.~Rodrigues, L.~Santos, J.~M.~Urbano
\paper The nonlinear $N$-membranes evolution problem
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 362
\pages 303--324
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2200}
\zmath{https://zbmath.org/?q=an:1179.35177}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 159
\issue 4
\pages 559--572
\crossref{https://doi.org/10.1007/s10958-009-9461-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349168807}
Linking options:
  • https://www.mathnet.ru/eng/znsl2200
  • https://www.mathnet.ru/eng/znsl/v362/p303
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :43
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024