|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 236, Pages 192–196
(Mi znsl22)
|
|
|
|
On some 2-extension of the field $\mathbb Q$ of rational numbers
V. M. Tsvetkov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
It is proved that the field $\mathbb Q$ of rational numbers has one and only one normal 2-extension $\mathbb Q_{(2,\infty)}/\mathbb Q$ with the groupe isomorphic to $Z_2*\mathbb Z/2$. If $\Omega$ the maximal subfield of a real-closed field not contain in $\sqrt 2$, then the algebraic closure $\overline\Omega$ is isomorphic to the field $\Omega\underset{\mathbb Q}{\otimes}\mathbb Q_{(2,\infty)}$.
Received: 26.05.1997
Citation:
V. M. Tsvetkov, “On some 2-extension of the field $\mathbb Q$ of rational numbers”, Problems in the theory of representations of algebras and groups. Part 5, Zap. Nauchn. Sem. POMI, 236, POMI, St. Petersburg, 1997, 192–196; J. Math. Sci. (New York), 95:2 (1999), 2161–2163
Linking options:
https://www.mathnet.ru/eng/znsl22 https://www.mathnet.ru/eng/znsl/v236/p192
|
Statistics & downloads: |
Abstract page: | 228 | Full-text PDF : | 111 | References: | 42 |
|