Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 362, Pages 176–240 (Mi znsl2197)  

This article is cited in 25 scientific papers (total in 25 papers)

Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity

P. Maremonti

Dipartimento di Matematica, Seconda Università degli Studi di Napoli
References:
Abstract: We study the Cauchy problem and the initial boundary value problem in the half-space of the Stokes and Navier–Stokes equations. We furnish existence and uniqueness of classical solutions $(u,\pi)$ (meaning at least $C^2\times C^1$ smooth with respect to the space variable and $C^1\times C^0$ smooth with respect to the time variable) without requiring of convergence at infinity. A priori the fields $u$ and $\pi$ are nondecreasing at infinity. In the case of the Stokes problem we prove the existence, for any $t>0$, and uniqueness of solutions with kinetic field $u=O([1+t^\frac\beta2][1+|x|^\beta])$ and pressure field $\pi=O([1+t^\frac\beta2][1+|x|^\beta]|x|^\gamma)$, for some $\beta\in(0,1)$ and $\gamma\in(0,1-\beta)$. In the case of the Navier–Stokes equations we prove the existence (local in time) and the uniqueness of classical solutions to the Navier–Stokes equations assuming an initial data only continuous and bounded, proving that, for any $t\in(0,T)$, the kinetic field $u(x,t)$ is bounded and, for any $\gamma\in(0,1)$, the pressure field $\pi(x,t)=O(1+|x|^\gamma)$. Bibl. – 20 titles.
Received: 15.09.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 4, Pages 486–523
DOI: https://doi.org/10.1007/s10958-009-9458-3
Bibliographic databases:
UDC: 517
Language: English
Citation: P. Maremonti, “Stokes and Navier–Stokes problems in the half-space: existence and uniqueness of solutions non converging to a limit at infinity”, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Zap. Nauchn. Sem. POMI, 362, POMI, St. Petersburg, 2008, 176–240; J. Math. Sci. (N. Y.), 159:4 (2009), 486–523
Citation in format AMSBIB
\Bibitem{Mar08}
\by P.~Maremonti
\paper Stokes and Navier--Stokes problems in the half-space: existence and uniqueness of solutions non converging to a~limit at infinity
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 362
\pages 176--240
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2197}
\zmath{https://zbmath.org/?q=an:05633098}
\elib{https://elibrary.ru/item.asp?id=13759346}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 159
\issue 4
\pages 486--523
\crossref{https://doi.org/10.1007/s10958-009-9458-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349262097}
Linking options:
  • https://www.mathnet.ru/eng/znsl2197
  • https://www.mathnet.ru/eng/znsl/v362/p176
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :123
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024