Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 362, Pages 92–119 (Mi znsl2194)  

This article is cited in 8 scientific papers (total in 8 papers)

The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids

I. V. Denisovaa, Sh. Nechasovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
b Mathematical Institute, Academy of Sciences of the Czech Republic
Full-text PDF (344 kB) Citations (8)
References:
Abstract: We consider the Oberbeck–Boussinesq approximation for unsteady motion of a drop in another fluid. On the unknown interface between the liquids, the surface tension is taken into account. We study this problem in Hölder classes of functions where local existence theorem for the problem is proved. The proof is based on the fact that the solvability of the problem with a temperature independent right-hand side was obtaind earlier. For a given velocity vector field of the fluids, we arrive at a diffraction problem for the heat equation which is solvable by well-known methods. Existence of a solution to the complete problem is proved by successive approximations. Bibl. – 10 titles.
Received: 15.12.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 4, Pages 436–451
DOI: https://doi.org/10.1007/s10958-009-9455-6
Bibliographic databases:
UDC: 532.526.6
Language: Russian
Citation: I. V. Denisova, Sh. Nechasova, “The Oberbeck–Boussinesq approximation for the motion of two incompressible fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Zap. Nauchn. Sem. POMI, 362, POMI, St. Petersburg, 2008, 92–119; J. Math. Sci. (N. Y.), 159:4 (2009), 436–451
Citation in format AMSBIB
\Bibitem{DenNec08}
\by I.~V.~Denisova, Sh.~Nechasova
\paper The Oberbeck--Boussinesq approximation for the motion of two incompressible fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 362
\pages 92--119
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2194}
\zmath{https://zbmath.org/?q=an:1179.35238}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 159
\issue 4
\pages 436--451
\crossref{https://doi.org/10.1007/s10958-009-9455-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349178857}
Linking options:
  • https://www.mathnet.ru/eng/znsl2194
  • https://www.mathnet.ru/eng/znsl/v362/p92
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :142
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024