Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 362, Pages 15–47 (Mi znsl2191)  

This article is cited in 2 scientific papers (total in 2 papers)

Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals

A. Arkhipova

Saint-Petersburg State University
Full-text PDF (352 kB) Citations (2)
References:
Abstract: A variational problem with an obstacle for a certain class of quadratic functionals is considered. It is assumed that admissible vector-valued functions satisfy the Dirichlet boundary condition and the obstacle is a given smooth $(N-1)$-dimensional surface $S$ in $\mathbb R^N$. It is not supposed that the surface $S$ is bounded.
It is proved that any minimizer $u$ of such an obstacle problem is a partially smooth function up to the boundary of prescribed domain. It is shown that $(n-2)$-Hausdorff measure of the set of singular points is zero. Moreover, $u$ is a weak solution of quasilinear system with two kinds of quadratic nonlinearities in the gradient. This is proved by a local penalty method. Bibl. – 25 titles.
Received: 12.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 159, Issue 4, Pages 391–410
DOI: https://doi.org/10.1007/s10958-009-9452-9
Bibliographic databases:
UDC: 517.9
Language: English
Citation: A. Arkhipova, “Variational problem with an obstacle in $\mathbb R^N$ for a class of quadratic functionals”, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Zap. Nauchn. Sem. POMI, 362, POMI, St. Petersburg, 2008, 15–47; J. Math. Sci. (N. Y.), 159:4 (2009), 391–410
Citation in format AMSBIB
\Bibitem{Ark08}
\by A.~Arkhipova
\paper Variational problem with an obstacle in $\mathbb R^N$ for a~class of quadratic functionals
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 362
\pages 15--47
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2191}
\zmath{https://zbmath.org/?q=an:1175.49033}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 159
\issue 4
\pages 391--410
\crossref{https://doi.org/10.1007/s10958-009-9452-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349240813}
Linking options:
  • https://www.mathnet.ru/eng/znsl2191
  • https://www.mathnet.ru/eng/znsl/v362/p15
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :55
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024