Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 335, Pages 231–245 (Mi znsl217)  

On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$

A. V. Tsiganov

Saint-Petersburg State University
References:
Abstract: Classification of the compatible ie–Poisson brackets on the manifold $e^*(3)$ is constructed. The corresponding bi-Hamiltonian systems are the classical integrable cases of the Euler–Poisson and Kirvhhof equations describing the motion of a solid body.
Received: 10.05.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 1, Pages 2831–2839
DOI: https://doi.org/10.1007/s10958-007-0168-4
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. V. Tsiganov, “On classification of the compatible Lie–Poisson brackets on the manifold $e^*(3)$”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 231–245; J. Math. Sci. (N. Y.), 143:1 (2007), 2831–2839
Citation in format AMSBIB
\Bibitem{Tsi06}
\by A.~V.~Tsiganov
\paper On classification of the compatible Lie--Poisson brackets on the manifold~$e^*(3)$
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 231--245
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269759}
\zmath{https://zbmath.org/?q=an:1133.53056}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2831--2839
\crossref{https://doi.org/10.1007/s10958-007-0168-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247385795}
Linking options:
  • https://www.mathnet.ru/eng/znsl217
  • https://www.mathnet.ru/eng/znsl/v335/p231
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :66
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024