Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 360, Pages 246–259 (Mi znsl2168)  

This article is cited in 2 scientific papers (total in 2 papers)

KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity

D. Talalaev, A. Chervov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (236 kB) Citations (2)
References:
Abstract: The Lax operator of the Gaudin-type models is a 1-form at the classical level. In virtue of the quantization scheme proposed by D. Talalaev, it is natural to treat the quantum Lax operator as a connection; this connection is a particular case of the Knizhnik–Zamolodchikov connection. In this paper we find a gauge transformation that produces the “second normal form” or the “Drinfeld–Sokolov” form. Moreover, the differential operator naturally corresponding to this form is given precisely by the quantum characteristic polynomial of the Lax operator (this operator is called the $G$-oper or Baxter operator). This observation allows us to relate solutions of the KZ and Baxter equations in an obvious way and to prove that the immanent KZ-equation has only meromorphic solutions. As a corollary, we obtain the quantum Cayley–Hamilton identity for the Gaudin-type Lax operators (including the general $\mathfrak{gl}_n[t]$ case). The presented construction sheds a new light on the geometric Langlands correspondence. We also discuss the relation with the Harish-Chandra homomorphism. Bibl. – 19 titles.
Received: 13.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 6, Pages 904–911
DOI: https://doi.org/10.1007/s10958-009-9415-1
Bibliographic databases:
UDC: 512.643.2
Language: Russian
Citation: D. Talalaev, A. Chervov, “KZ equation, $G$-opers, quantum Drinfeld–Sokolov reduction, and quantum Cayley–Hamilton identity”, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 246–259; J. Math. Sci. (N. Y.), 158:6 (2009), 904–911
Citation in format AMSBIB
\Bibitem{TalChe08}
\by D.~Talalaev, A.~Chervov
\paper KZ~equation, $G$-opers, quantum Drinfeld--Sokolov reduction, and quantum Cayley--Hamilton identity
\inbook Representation theory, dynamics systems, combinatorial methods. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 360
\pages 246--259
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2168}
\zmath{https://zbmath.org/?q=an:1179.82052}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 6
\pages 904--911
\crossref{https://doi.org/10.1007/s10958-009-9415-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349156007}
Linking options:
  • https://www.mathnet.ru/eng/znsl2168
  • https://www.mathnet.ru/eng/znsl/v360/p246
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :298
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024