Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 360, Pages 231–237 (Mi znsl2166)  

This article is cited in 4 scientific papers (total in 4 papers)

Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps

A. G. O'Farrella, M. Roginskayabc

a Mathematics Department, National University of Ireland
b Department of Mathematical Sciences, Chalmers University of Technology and the University of Göteborg
c Department of Mathematical Sciences, Gothenburg University
Full-text PDF (170 kB) Citations (4)
References:
Abstract: Let $\operatorname{Diffeo}=\operatorname{Diffeo}(\mathbb R)$ denote the group of infinitely-differentiable diffeomorphisms of the real line $\mathbb R$, under the operation of composition, and let $\operatorname{Diffeo}^+$ be the subgroup of diffeomorphisms of degree $+1$, i.e. orientation-preserving diffeomorphisms. We show how to reduce the problem of determining whether or not two given elements $f,g\in\operatorname{Diffeo}$ are conjugate in $\operatorname{Diffeo}$ to associated conjugacy problems in the subgroup $\operatorname{Diffeo}^+$. The main result concerns the case when $f$ and $g$ have degree $-1$, and specifies (in an explicit and verifiable way) precisely what must be added to the assumption that their (compositional) squares are conjugate in $\operatorname{Diffeo}^+$, in order to ensure that $f$ is conjugated to $g$ by an element of $\operatorname{Diffeo}^+$. The methods involve formal power series, and results of Kopell on centralisers in the diffeomorphism group of a half-open interval. Bibl. – 4 titles.
Received: 24.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 6, Pages 895–898
DOI: https://doi.org/10.1007/s10958-009-9419-x
Bibliographic databases:
UDC: 517.518.27
Language: English
Citation: A. G. O'Farrell, M. Roginskaya, “Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps”, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 231–237; J. Math. Sci. (N. Y.), 158:6 (2009), 895–898
Citation in format AMSBIB
\Bibitem{OfaRog08}
\by A.~G.~O'Farrell, M.~Roginskaya
\paper Reducing conjugacy in the full diffeomorphism group of~$\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps
\inbook Representation theory, dynamics systems, combinatorial methods. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 360
\pages 231--237
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2166}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 6
\pages 895--898
\crossref{https://doi.org/10.1007/s10958-009-9419-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349119924}
Linking options:
  • https://www.mathnet.ru/eng/znsl2166
  • https://www.mathnet.ru/eng/znsl/v360/p231
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :45
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024