|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 360, Pages 153–161
(Mi znsl2163)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On the coincidence of the canonical embeddings of a metric space into a Banach space
P. B. Zatitskii Saint-Petersburg State University
Abstract:
Recall the two classical canonical isometric embeddings of a finite metric space $X$ into a Banach space. That is, the Hausdorff–Kuratowsky embedding $x\to\rho(x,\cdot)$ into the space of continuous functions on $X$ with the max-norm, and the Kantorovich–Rubinshtein embedding $x\to\delta_x$ (where $\delta_x$ is the $\delta$-measure concentrated at $x$) with the transportation norm. We prove that these embeddings are not equivalent if $|X|>4$. Bibl. – 2 titles.
Received: 17.11.2008
Citation:
P. B. Zatitskii, “On the coincidence of the canonical embeddings of a metric space into a Banach space”, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 153–161; J. Math. Sci. (N. Y.), 158:6 (2009), 853–857
Linking options:
https://www.mathnet.ru/eng/znsl2163 https://www.mathnet.ru/eng/znsl/v360/p153
|
Statistics & downloads: |
Abstract page: | 317 | Full-text PDF : | 105 | References: | 45 |
|