Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 335, Pages 205–230 (Mi znsl216)  

This article is cited in 3 scientific papers (total in 3 papers)

Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions

A. S. Khoroshkin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (353 kB) Citations (3)
References:
Abstract: In this work we consider infinite-dimensional Lie-algebra $W_n\ltimes\mathbf g\otimes\mathcal O_n$ of formal vector fields on $n$-dimensional plane, extended by formal $\mathbf g$-valued functions of $n$ variables. Here $\mathbf g$ is an arbitrary Lie algebra. We show that the cochain complex of this Lie algebra is quasi-isomorphic to the quotient of Weyl algebra of $(\mathbf{gl}_n\oplus\mathbf g)$ by $(2n+1)$-st term of standard filtration. We consider separately the case of reductive Lie algebra $\mathbf g$. We show how one can use the methods of formal geometry, to construct characteristic classes of bundles. For every $\mathbf G$-bundle on $n$-dimensional complex manifold we construct a natural homomorphism from ring $A$ of relative cohomologies of Lie algebra $W_n\ltimes \mathbf g\otimes\mathcal O_n$ to ring of tohomologies of the manifold. We show that generators of ring $A$ mapped under this homomorphism to characteristic classes of tangent and $\mathbf G$-bundles.
Received: 29.08.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 1, Pages 2816–2830
DOI: https://doi.org/10.1007/s10958-007-0167-5
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. S. Khoroshkin, “Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 205–230; J. Math. Sci. (N. Y.), 143:1 (2007), 2816–2830
Citation in format AMSBIB
\Bibitem{Kho06}
\by A.~S.~Khoroshkin
\paper Lie algebra of formal vector fields extended by formal $\mathbf g$-valued functions
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 205--230
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269758}
\zmath{https://zbmath.org/?q=an:1117.17008}
\elib{https://elibrary.ru/item.asp?id=9307447}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2816--2830
\crossref{https://doi.org/10.1007/s10958-007-0167-5}
\elib{https://elibrary.ru/item.asp?id=13548638}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247354057}
Linking options:
  • https://www.mathnet.ru/eng/znsl216
  • https://www.mathnet.ru/eng/znsl/v335/p205
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:309
    Full-text PDF :136
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024