Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 360, Pages 5–30 (Mi znsl2157)  

This article is cited in 4 scientific papers (total in 4 papers)

Form factors, plane partitions and random walks

N. M. Bogoliubov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (446 kB) Citations (4)
References:
Abstract: An exactly solvable boson model, the so-called “phase model,” is considered. A relation between certain transition matrix elements of this model and boxed plane partitions, three-dimensional Young diagrams placed into a box of finite size, is established. It is shown that the natural model describing the behavior of friendly walkers, ones that can share the same lattice sites, is the “phase model.” An expression for the number of all admissible nests of lattice paths made by a fixed number of friendly walkers for a certain number of steps is obtained. Bibl. – 35 titles.
Received: 21.11.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 6, Pages 771–786
DOI: https://doi.org/10.1007/s10958-009-9411-5
Bibliographic databases:
UDC: 517.987
Language: English
Citation: N. M. Bogoliubov, “Form factors, plane partitions and random walks”, Representation theory, dynamics systems, combinatorial methods. Part XVI, Zap. Nauchn. Sem. POMI, 360, POMI, St. Petersburg, 2008, 5–30; J. Math. Sci. (N. Y.), 158:6 (2009), 771–786
Citation in format AMSBIB
\Bibitem{Bog08}
\by N.~M.~Bogoliubov
\paper Form factors, plane partitions and random walks
\inbook Representation theory, dynamics systems, combinatorial methods. Part~XVI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 360
\pages 5--30
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2157}
\zmath{https://zbmath.org/?q=an:1177.05015}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 6
\pages 771--786
\crossref{https://doi.org/10.1007/s10958-009-9411-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349161422}
Linking options:
  • https://www.mathnet.ru/eng/znsl2157
  • https://www.mathnet.ru/eng/znsl/v360/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :71
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024