Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 358, Pages 199–223 (Mi znsl2152)  

This article is cited in 3 scientific papers (total in 3 papers)

Defining the integers in large rings of a number field using one universal quantifier

G. Cornelissena, A. Shlapentokhb

a University Utrecht, Mathematical Institute
b East Carolina University, Department of Mathematics
Full-text PDF (328 kB) Citations (3)
References:
Abstract: Julia Robinson has given a first-order definition of the rational integers $\mathbb Z$ in the rational numbers $\mathbb Q$ by a formula $(\forall\exists\forall\exists)(F=0)$ where the $\forall$-quantifiers run over a total of 8 variables, and where $F$ is a polynomial.
We show that for a large class of number fields, not including $\mathbb Q$, for every $\varepsilon>0$, there exists a set of primes $\mathcal S$ of natural density exceeding $1-\varepsilon$, such that $\mathbb Z$ can be defined as a subset of the “large” subring
$$ \{x\in K\colon\operatorname{ord}_\mathfrak px\geq0,\ \forall\,\mathfrak p\not\in\mathcal S\} $$
of $K$ by a formula where there is only one $\forall$-quantifier. In the case of $\mathbb Q$, we will need two quantifiers. We also show that in some cases one can define a subfield of a number field using just one universal quantifier. Bibl. – 18 titles.
Received: 22.08.2007
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 5, Pages 713–726
DOI: https://doi.org/10.1007/s10958-009-9404-4
Bibliographic databases:
UDC: 511.526
Language: English
Citation: G. Cornelissen, A. Shlapentokh, “Defining the integers in large rings of a number field using one universal quantifier”, Studies in constructive mathematics and mathematical logic. Part XI, Zap. Nauchn. Sem. POMI, 358, POMI, St. Petersburg, 2008, 199–223; J. Math. Sci. (N. Y.), 158:5 (2009), 713–726
Citation in format AMSBIB
\Bibitem{CorShl08}
\by G.~Cornelissen, A.~Shlapentokh
\paper Defining the integers in large rings of a~number field using one universal quantifier
\inbook Studies in constructive mathematics and mathematical logic. Part~XI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 358
\pages 199--223
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2152}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 5
\pages 713--726
\crossref{https://doi.org/10.1007/s10958-009-9404-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349218125}
Linking options:
  • https://www.mathnet.ru/eng/znsl2152
  • https://www.mathnet.ru/eng/znsl/v358/p199
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :38
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024