Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 358, Pages 38–53 (Mi znsl2144)  

Tree inclusions in windows and slices

I. Guessariana, P. Cégielskib

a Laboratoire d'Informatique Algorithmique: Fondements et Applications, Paris VII – Denis Diderot
b LACL, Université Paris-Est
References:
Abstract: A labelled tree $P$ is an embedded subtree of a labelled tree $T$ if $P$ can be obtained by deleting some nodes from $T$: if a node $v$ is deleted, all edges adjacent to $v$ are also deleted and replaced by edges going from the parent of $v$ (if it exists) to the children of $v$. Deciding whether $P$ is an embedded subtree of $T$ is known to be NP-complete.
Given two trees (a target $T$ and a pattern $P$) and a natural number $w$, we address two problems: 1) counting the number of windows of $T$ having height exactly $w$ and containing the pattern $P$ as an embedded subtree, and 2) counting the number of slices of $T$ having height exactly $w$ and containing the pattern $P$ as an embedded subtree. Our algorithms run in time $O(|T|(w-h(P)+2)^{4|P|})$, where $|T|$ (resp., $|P|$) is the size of $T$ (resp., $P$), and $h(P)$ is the height of $P$. Bibl. – 10 titles.
Received: 20.05.2007
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 158, Issue 5, Pages 623–632
DOI: https://doi.org/10.1007/s10958-009-9401-7
Bibliographic databases:
UDC: 519.16
Language: English
Citation: I. Guessarian, P. Cégielski, “Tree inclusions in windows and slices”, Studies in constructive mathematics and mathematical logic. Part XI, Zap. Nauchn. Sem. POMI, 358, POMI, St. Petersburg, 2008, 38–53; J. Math. Sci. (N. Y.), 158:5 (2009), 623–632
Citation in format AMSBIB
\Bibitem{GueCeg08}
\by I.~Guessarian, P.~C\'egielski
\paper Tree inclusions in windows and slices
\inbook Studies in constructive mathematics and mathematical logic. Part~XI
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 358
\pages 38--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2144}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 158
\issue 5
\pages 623--632
\crossref{https://doi.org/10.1007/s10958-009-9401-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67349203558}
Linking options:
  • https://www.mathnet.ru/eng/znsl2144
  • https://www.mathnet.ru/eng/znsl/v358/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :78
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024