Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 143–157 (Mi znsl2123)  

This article is cited in 10 scientific papers (total in 10 papers)

Majoration principles and some inequalities for polynomials and rational functions with prescribed poles

S. I. Kalmykov

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: The paper considers the equality cases in the majoration principle for meromorphic functions established earlier by V. N. Dubinin and S. I. Kalmykov [Mat. Sb. 198:12 (2007), 37–46; translated in Sb. Math. 198:11–12 (2007), 1737–1745]. As corollaries of this principle, we obtain new inequalities for the coefficients and derivatives of polynomials satisfying certain conditions on two intervals. Simple proofs of some Lukashov's theorems on the derivatives of rational functions on several intervals [MR 2069196 (2006):26010)] are provided. Bibl. – 13 titles.
Received: 07.07.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 157, Issue 4, Pages 623–631
DOI: https://doi.org/10.1007/s10958-009-9343-0
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: S. I. Kalmykov, “Majoration principles and some inequalities for polynomials and rational functions with prescribed poles”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 143–157; J. Math. Sci. (N. Y.), 157:4 (2009), 623–631
Citation in format AMSBIB
\Bibitem{Kal08}
\by S.~I.~Kalmykov
\paper Majoration principles and some inequalities for polynomials and rational functions with prescribed poles
\inbook Analytical theory of numbers and theory of functions. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 357
\pages 143--157
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2123}
\zmath{https://zbmath.org/?q=an:1182.30041}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 157
\issue 4
\pages 623--631
\crossref{https://doi.org/10.1007/s10958-009-9343-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl2123
  • https://www.mathnet.ru/eng/znsl/v357/p143
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :119
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024