|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 115–142
(Mi znsl2122)
|
|
|
|
Approximation of periodic functions in the uniform metric by Jackson type polynomials
V. V. Zhuk Saint-Petersburg State University
Abstract:
Let $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$,
$$
J_n(f,x)=\frac1{(n+1)^2}\sum^n_{k=0}f(t_k)\Biggl(\frac{\sin\frac{(n+1)}2(x-t_k)}{\sin\frac{(x-t_k)}2}\Biggr)^2,\quad\text{where}\quad t_k=\frac{2\pi k}{n+1},
$$
be the Jackson polynomials of a function $f$. Let $\omega_r(f,h)$ be the $r$th continuity modulu of $f$, $E_n(f)$ be the best approximation of $f$ in the space $C$ by trigonometric polynomials of order $n$,
and let $\widetilde F$ be the function trigonometrically conjugated with the primitive of $f$. The paper establishes results of the following types:
\begin{align*}
E_n(f)+\|J_{4n-1}(f)-f\|&\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr),\\
\sup_{\alpha\in\mathbb R}\|J_n(f,\cdot+\alpha)-f(\cdot+\alpha)\|&\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr).
\end{align*}
Here, the symbol $\approx$ does not depend on $f$ and $n$. Bibl. – 7 titles.
Received: 01.09.2008
Citation:
V. V. Zhuk, “Approximation of periodic functions in the uniform metric by Jackson type polynomials”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 115–142; J. Math. Sci. (N. Y.), 157:4 (2009), 607–622
Linking options:
https://www.mathnet.ru/eng/znsl2122 https://www.mathnet.ru/eng/znsl/v357/p115
|
Statistics & downloads: |
Abstract page: | 343 | Full-text PDF : | 101 | References: | 73 |
|