Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 115–142 (Mi znsl2122)  

Approximation of periodic functions in the uniform metric by Jackson type polynomials

V. V. Zhuk

Saint-Petersburg State University
References:
Abstract: Let $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$,
$$ J_n(f,x)=\frac1{(n+1)^2}\sum^n_{k=0}f(t_k)\Biggl(\frac{\sin\frac{(n+1)}2(x-t_k)}{\sin\frac{(x-t_k)}2}\Biggr)^2,\quad\text{where}\quad t_k=\frac{2\pi k}{n+1}, $$
be the Jackson polynomials of a function $f$. Let $\omega_r(f,h)$ be the $r$th continuity modulu of $f$, $E_n(f)$ be the best approximation of $f$ in the space $C$ by trigonometric polynomials of order $n$, and let $\widetilde F$ be the function trigonometrically conjugated with the primitive of $f$. The paper establishes results of the following types:
\begin{align*} E_n(f)+\|J_{4n-1}(f)-f\|&\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr),\\ \sup_{\alpha\in\mathbb R}\|J_n(f,\cdot+\alpha)-f(\cdot+\alpha)\|&\approx\omega_1\Bigl(f,\frac1{n+1}\Bigr)+(n+1)\omega_2\Bigl(\widetilde F,\frac1{n+1}\Bigr). \end{align*}
Here, the symbol $\approx$ does not depend on $f$ and $n$. Bibl. – 7 titles.
Received: 01.09.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 157, Issue 4, Pages 607–622
DOI: https://doi.org/10.1007/s10958-009-9345-y
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. V. Zhuk, “Approximation of periodic functions in the uniform metric by Jackson type polynomials”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 115–142; J. Math. Sci. (N. Y.), 157:4 (2009), 607–622
Citation in format AMSBIB
\Bibitem{Zhu08}
\by V.~V.~Zhuk
\paper Approximation of periodic functions in the uniform metric by Jackson type polynomials
\inbook Analytical theory of numbers and theory of functions. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 357
\pages 115--142
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2122}
\zmath{https://zbmath.org/?q=an:05659056}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 157
\issue 4
\pages 607--622
\crossref{https://doi.org/10.1007/s10958-009-9345-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl2122
  • https://www.mathnet.ru/eng/znsl/v357/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :101
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024