|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 90–114
(Mi znsl2121)
|
|
|
|
Approximation of periodic functions by Jackson type interpolation sums
V. V. Zhuk Saint-Petersburg State University
Abstract:
Let
$$
\Phi_n(t)=\frac1{2\pi(n+1)}\Biggl(\frac{\sin\frac{(n+1)t}2}{\sin\frac t2}\Biggr)^2
$$
be Fejer's kernel, $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$;
$$
J_n(f,x)=\frac{2\pi}{n+1}\sum^n_{k=0}f(t_k)\Phi_n(x-t_k),\quad\text{where}\quad t_k=\frac{2\pi k}{n+1},
$$
be Jackson's polynomials of a function $f$, and let
$$
\sigma_n(f,x)=\int^\pi_{-\pi}f(x+t)\Phi_n(t)\,dt
$$
be Fejer's sums of $f$.
The paper establishes upper estimates for the values of the types
$$
|f(x)-J_n(f,x)|,\quad|J_n(f,x)-\sigma_n(f,x)|,\quad\|f-J_n(f)\|,\quad\|J_n(f)-\sigma_n(f)\|,
$$
which are exact in the order for every function $f\in C$. Special attention is paid to constants occurring in the inequalities obtained. Bibl. – 14 titles.
Received: 01.09.2008
Citation:
V. V. Zhuk, “Approximation of periodic functions by Jackson type interpolation sums”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 90–114; J. Math. Sci. (N. Y.), 157:4 (2009), 592–606
Linking options:
https://www.mathnet.ru/eng/znsl2121 https://www.mathnet.ru/eng/znsl/v357/p90
|
Statistics & downloads: |
Abstract page: | 313 | Full-text PDF : | 90 | References: | 82 |
|