Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 90–114 (Mi znsl2121)  

Approximation of periodic functions by Jackson type interpolation sums

V. V. Zhuk

Saint-Petersburg State University
References:
Abstract: Let
$$ \Phi_n(t)=\frac1{2\pi(n+1)}\Biggl(\frac{\sin\frac{(n+1)t}2}{\sin\frac t2}\Biggr)^2 $$
be Fejer's kernel, $C$ be a space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$;
$$ J_n(f,x)=\frac{2\pi}{n+1}\sum^n_{k=0}f(t_k)\Phi_n(x-t_k),\quad\text{where}\quad t_k=\frac{2\pi k}{n+1}, $$
be Jackson's polynomials of a function $f$, and let
$$ \sigma_n(f,x)=\int^\pi_{-\pi}f(x+t)\Phi_n(t)\,dt $$
be Fejer's sums of $f$.
The paper establishes upper estimates for the values of the types
$$ |f(x)-J_n(f,x)|,\quad|J_n(f,x)-\sigma_n(f,x)|,\quad\|f-J_n(f)\|,\quad\|J_n(f)-\sigma_n(f)\|, $$
which are exact in the order for every function $f\in C$. Special attention is paid to constants occurring in the inequalities obtained. Bibl. – 14 titles.
Received: 01.09.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 157, Issue 4, Pages 592–606
DOI: https://doi.org/10.1007/s10958-009-9346-x
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. V. Zhuk, “Approximation of periodic functions by Jackson type interpolation sums”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 90–114; J. Math. Sci. (N. Y.), 157:4 (2009), 592–606
Citation in format AMSBIB
\Bibitem{Zhu08}
\by V.~V.~Zhuk
\paper Approximation of periodic functions by Jackson type interpolation sums
\inbook Analytical theory of numbers and theory of functions. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 357
\pages 90--114
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2121}
\zmath{https://zbmath.org/?q=an:05659055}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 157
\issue 4
\pages 592--606
\crossref{https://doi.org/10.1007/s10958-009-9346-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl2121
  • https://www.mathnet.ru/eng/znsl/v357/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :90
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024