Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 357, Pages 33–45 (Mi znsl2117)  

This article is cited in 2 scientific papers (total in 2 papers)

A distortion theorem for the class of typically real functions

E. G. Goluzina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (223 kB) Citations (2)
References:
Abstract: The author's investigations in the well known class $T$ of typically real functions $f(z)$ in the disk $U=\{z:|z|<1\}$ are prolonged. The region of values of the system $\{f(z_0),f(z_0),f(r_1),f(r_2),\dots,f(r_n)\}$ in the class $T$ is investigated. Here $z_0\in U$, $\operatorname{Im}z_0\ne0$, $0<r_j<1$ for $j=1,\dots,n$, $n\ge2$. As a corollary, the region of values of $f'(z_0)$ in the class of functions $f\in T$ with fixed values $f(z_0)$ and $f(r_j)$ $(j=1,\dots,n)$ is determined. In the proof a criterion of decision power moment problem is used. Bibl. – 10 titles.
Received: 11.09.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 157, Issue 4, Pages 560–567
DOI: https://doi.org/10.1007/s10958-009-9338-x
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: E. G. Goluzina, “A distortion theorem for the class of typically real functions”, Analytical theory of numbers and theory of functions. Part 23, Zap. Nauchn. Sem. POMI, 357, POMI, St. Petersburg, 2008, 33–45; J. Math. Sci. (N. Y.), 157:4 (2009), 560–567
Citation in format AMSBIB
\Bibitem{Gol08}
\by E.~G.~Goluzina
\paper A distortion theorem for the class of typically real functions
\inbook Analytical theory of numbers and theory of functions. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 357
\pages 33--45
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl2117}
\zmath{https://zbmath.org/?q=an:05659051}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 157
\issue 4
\pages 560--567
\crossref{https://doi.org/10.1007/s10958-009-9338-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl2117
  • https://www.mathnet.ru/eng/znsl/v357/p33
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :74
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024