Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 335, Pages 100–118 (Mi znsl211)  

This article is cited in 2 scientific papers (total in 2 papers)

On one ansatz for $\mathrm{sl}_2$-invariant $R$-matrices

A. G. Bytsko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (248 kB) Citations (2)
References:
Abstract: The spectral decomposition of regular $\mathrm{sl}_2$-invariant $R$-matrices $R(\lambda)$ is studied by means of the method of reduction of the Yang–Baxter equation onto subspaces of a given spin. Restrictions on the possible structure of several highest coefficients in the spectral decomposition are derived. The origin and structure of the exceptional solution in the case of spin $s=3$ are explained. An analogous analysis is performed for constant $R$-matrices. In particular, it is shown that the permutation matrix $\mathbb P$ is a “rigid” solution.
Received: 12.07.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 143, Issue 1, Pages 2754–2764
DOI: https://doi.org/10.1007/s10958-007-0162-x
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. G. Bytsko, “On one ansatz for $\mathrm{sl}_2$-invariant $R$-matrices”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 100–118; J. Math. Sci. (N. Y.), 143:1 (2007), 2754–2764
Citation in format AMSBIB
\Bibitem{Byt06}
\by A.~G.~Bytsko
\paper On one ansatz for $\mathrm{sl}_2$-invariant $R$-matrices
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 100--118
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269753}
\zmath{https://zbmath.org/?q=an:1116.81028}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2754--2764
\crossref{https://doi.org/10.1007/s10958-007-0162-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247359423}
Linking options:
  • https://www.mathnet.ru/eng/znsl211
  • https://www.mathnet.ru/eng/znsl/v335/p100
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :44
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024