|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 83, Pages 73–82
(Mi znsl2105)
|
|
|
|
Generalization of istratescu's theorem on contractive mappings in metric spaces
M. L. Katkov
Abstract:
In this paper we consider mappings $T\colon X\to X$ of metric spaces, satisfying the condition:
$$
d(T_x,T_y)\leqslant\omega(\alpha_1d(x,y)+\alpha_2d(x,Tx)+\alpha_3d(y,Ty)+\alpha_4d(x,Ty)+\alpha_5d(y,Tx),
$$
where $\omega$ is some right semicontinuous function. We prove that if $\omega$ is a nondecreasing function, $\omega(r)<r$ for $r>0$, $r-\omega(r)\to\infty$ as $r\to\infty$, $\sum^5_{i=1}\alpha_i(x,y)\leqslant1$, then the map $T$ has a fixed point $\xi$ and $\lim_{n\to\infty}T^nx=\xi$ for any point $x\in X$. Interesting examples are given.
Citation:
M. L. Katkov, “Generalization of istratescu's theorem on contractive mappings in metric spaces”, Investigations in topology. Part III, Zap. Nauchn. Sem. LOMI, 83, "Nauka", Leningrad. Otdel., Leningrad, 1979, 73–82; J. Soviet Math., 19:3 (1982), 1258–1265
Linking options:
https://www.mathnet.ru/eng/znsl2105 https://www.mathnet.ru/eng/znsl/v83/p73
|
Statistics & downloads: |
Abstract page: | 158 | Full-text PDF : | 50 |
|