Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 236, Pages 183–191 (Mi znsl21)  

This article is cited in 2 scientific papers (total in 2 papers)

Trigonometrical algebras

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (142 kB) Citations (2)
References:
Abstract: Euclidean $n$-dimensional spaces that have an analog of a vector product, i.e., a bilinear binary operation satisfying the identity $|x\cdot y|^2+(x,y)^2=|x|^2\cdot|y|^2$ ($(\cdot,\cdot)$ is a scalar product). It is clarified for which $n$ such a product exists.
Received: 21.11.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 95, Issue 2, Pages 2156–2160
DOI: https://doi.org/10.1007/BF02169977
Bibliographic databases:
UDC: 512.86
Language: Russian
Citation: P. A. Terekhin, “Trigonometrical algebras”, Problems in the theory of representations of algebras and groups. Part 5, Zap. Nauchn. Sem. POMI, 236, POMI, St. Petersburg, 1997, 183–191; J. Math. Sci. (New York), 95:2 (1999), 2156–2160
Citation in format AMSBIB
\Bibitem{Ter97}
\by P.~A.~Terekhin
\paper Trigonometrical algebras
\inbook Problems in the theory of representations of algebras and groups. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 236
\pages 183--191
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl21}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754459}
\zmath{https://zbmath.org/?q=an:0927.17003}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 95
\issue 2
\pages 2156--2160
\crossref{https://doi.org/10.1007/BF02169977}
Linking options:
  • https://www.mathnet.ru/eng/znsl21
  • https://www.mathnet.ru/eng/znsl/v236/p183
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :86
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024