|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 82, Pages 95–99
(Mi znsl2094)
|
|
|
|
This article is cited in 9 scientific papers (total in 10 papers)
Length of the period of a quadratic irrational
E. V. Podsypanin
Abstract:
Let $\xi$ be a real quadratic irrational of discriminant $D=f^2D_1>0$, where $D_1$ is the fundamental discriminant of the field $\mathbf Q(\sqrt{D})$, $\chi(n)$ and $h$ are the character and the number of classes of the field $\mathbf Q(\sqrt{D})$, $L(1,\chi)=\sum^\infty_{n=1}\frac{\chi(n)}{n}$, respectively, and
$$
l<\frac{\omega}{\log\dfrac{1+\sqrt{5}}{2}}\cdot\frac{D^{\frac12}L(1,\chi)}{h},
$$
proves the following estimate for the length $l$ of the period of the expansion of $\xi$ into a continued fraction: where $\omega=1$ if $f=1$ and $\omega=2$ if $f>1$. A. S. Pen and B. F. Skubenko (Mat. Zametki, 5, No. 4, 413–482 (1969)) have proved this estimate in the case $f=1$, $D_1\equiv0$ $(\operatorname{mod}4)$.
Citation:
E. V. Podsypanin, “Length of the period of a quadratic irrational”, Studies in number theory. Part 5, Zap. Nauchn. Sem. LOMI, 82, "Nauka", Leningrad. Otdel., Leningrad, 1979, 95–99; J. Soviet Math., 18:6 (1982), 919–923
Linking options:
https://www.mathnet.ru/eng/znsl2094 https://www.mathnet.ru/eng/znsl/v82/p95
|
Statistics & downloads: |
Abstract page: | 405 | Full-text PDF : | 164 |
|