Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 82, Pages 95–99 (Mi znsl2094)  

This article is cited in 9 scientific papers (total in 10 papers)

Length of the period of a quadratic irrational

E. V. Podsypanin
Abstract: Let $\xi$ be a real quadratic irrational of discriminant $D=f^2D_1>0$, where $D_1$ is the fundamental discriminant of the field $\mathbf Q(\sqrt{D})$, $\chi(n)$ and $h$ are the character and the number of classes of the field $\mathbf Q(\sqrt{D})$, $L(1,\chi)=\sum^\infty_{n=1}\frac{\chi(n)}{n}$, respectively, and
$$ l<\frac{\omega}{\log\dfrac{1+\sqrt{5}}{2}}\cdot\frac{D^{\frac12}L(1,\chi)}{h}, $$
proves the following estimate for the length $l$ of the period of the expansion of $\xi$ into a continued fraction: where $\omega=1$ if $f=1$ and $\omega=2$ if $f>1$. A. S. Pen and B. F. Skubenko (Mat. Zametki, 5, No. 4, 413–482 (1969)) have proved this estimate in the case $f=1$, $D_1\equiv0$ $(\operatorname{mod}4)$.
English version:
Journal of Soviet Mathematics, 1982, Volume 18, Issue 6, Pages 919–923
DOI: https://doi.org/10.1007/BF01763963
Bibliographic databases:
UDC: 511.622
Language: Russian
Citation: E. V. Podsypanin, “Length of the period of a quadratic irrational”, Studies in number theory. Part 5, Zap. Nauchn. Sem. LOMI, 82, "Nauka", Leningrad. Otdel., Leningrad, 1979, 95–99; J. Soviet Math., 18:6 (1982), 919–923
Citation in format AMSBIB
\Bibitem{Pod79}
\by E.~V.~Podsypanin
\paper Length of the period of a quadratic irrational
\inbook Studies in number theory. Part~5
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 82
\pages 95--99
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=537024}
\zmath{https://zbmath.org/?q=an:0481.10007|0435.10008}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 18
\issue 6
\pages 919--923
\crossref{https://doi.org/10.1007/BF01763963}
Linking options:
  • https://www.mathnet.ru/eng/znsl2094
  • https://www.mathnet.ru/eng/znsl/v82/p95
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :164
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024