|
Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 82, Pages 88–94
(Mi znsl2093)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)
Kh. N. Narzullaev, B. F. Skubenko
Abstract:
One refines an estimate of B. F. Skubenko (Tr. Mat. Inst. Akad. Nauk 148, 218–224 (1978)). Let $\Lambda$ be a point lattice of determinant $d(\Lambda)$ in the $n$-dimensional Euclidean space $\mathbf R^n$, and let $L\in\mathbf R^n$. We consider the nonhomogeneous
$$
M=M(\Lambda,L)=\inf_{(z_1,\dots,z_n)\in\Lambda+L}\prod^n_{i=1}|z_i|.
$$
One proves that there exists an effectively computable constant $n_0$ such that if $n\geqslant n_0$, then
$$
M<2^{-\frac n2}e^{20}n^{-\frac37}\log^{\frac47}nd(\Lambda).
$$
Citation:
Kh. N. Narzullaev, B. F. Skubenko, “A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)”, Studies in number theory. Part 5, Zap. Nauchn. Sem. LOMI, 82, "Nauka", Leningrad. Otdel., Leningrad, 1979, 88–94; J. Soviet Math., 18:6 (1982), 913–918
Linking options:
https://www.mathnet.ru/eng/znsl2093 https://www.mathnet.ru/eng/znsl/v82/p88
|
Statistics & downloads: |
Abstract page: | 145 | Full-text PDF : | 48 |
|