Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1979, Volume 82, Pages 88–94 (Mi znsl2093)  

This article is cited in 1 scientific paper (total in 1 paper)

A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)

Kh. N. Narzullaev, B. F. Skubenko
Full-text PDF (357 kB) Citations (1)
Abstract: One refines an estimate of B. F. Skubenko (Tr. Mat. Inst. Akad. Nauk 148, 218–224 (1978)). Let $\Lambda$ be a point lattice of determinant $d(\Lambda)$ in the $n$-dimensional Euclidean space $\mathbf R^n$, and let $L\in\mathbf R^n$. We consider the nonhomogeneous
$$ M=M(\Lambda,L)=\inf_{(z_1,\dots,z_n)\in\Lambda+L}\prod^n_{i=1}|z_i|. $$
One proves that there exists an effectively computable constant $n_0$ such that if $n\geqslant n_0$, then
$$ M<2^{-\frac n2}e^{20}n^{-\frac37}\log^{\frac47}nd(\Lambda). $$
English version:
Journal of Soviet Mathematics, 1982, Volume 18, Issue 6, Pages 913–918
DOI: https://doi.org/10.1007/BF01763962
Bibliographic databases:
UDC: 511.9
Language: Russian
Citation: Kh. N. Narzullaev, B. F. Skubenko, “A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)”, Studies in number theory. Part 5, Zap. Nauchn. Sem. LOMI, 82, "Nauka", Leningrad. Otdel., Leningrad, 1979, 88–94; J. Soviet Math., 18:6 (1982), 913–918
Citation in format AMSBIB
\Bibitem{NarSku79}
\by Kh.~N.~Narzullaev, B.~F.~Skubenko
\paper A refinement of an estimate of the arithmetic minimum of the product of nonhomogeneous linear forms (regarding Minkowski's nonhomogeneous conjecture)
\inbook Studies in number theory. Part~5
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 82
\pages 88--94
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2093}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=537023}
\zmath{https://zbmath.org/?q=an:0481.10026|0431.10016}
\transl
\jour J. Soviet Math.
\yr 1982
\vol 18
\issue 6
\pages 913--918
\crossref{https://doi.org/10.1007/BF01763962}
Linking options:
  • https://www.mathnet.ru/eng/znsl2093
  • https://www.mathnet.ru/eng/znsl/v82/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024