Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 59, Pages 60–80 (Mi znsl2085)  

Maximum of the fourth diameter in the family of continua with prescribed capacity

G. V. Kuz'mina
Abstract: We obtain a complete solution of the problem of the maximum of the fourth diameter
$$ d_4(E)=\biggl\{\max_{z_k,z_r\in E}\prod_{1\leqslant k\leqslant l\leqslant4}|z_k-z_l|\biggr\}^{1/6} $$
in the family of continua with capacity 1. Let $E(0,e^{i\alpha},e^{-i\alpha})$, $0<\alpha<\pi/2$, be a continuum of minimum capacity containing the points $0$, $e^{i\alpha}$, $e^{-i\alpha}$; $H(\alpha)=\operatorname{cap}E(0,e^{i\alpha},e^{-i\alpha})$. Let $c(\alpha)$ be the common point of three analytic arcs which form $E(0,e^{i\alpha},e^{-i\alpha})$. One shows that the indicated maximum is realized by the continuum $\mathscr E=\{z:H(\alpha_0)z^2\in E(0,e^{i\alpha},e^{-i\alpha})\}$ where $\alpha_0$, $0<\alpha_0<\pi/2$, is a solution of the equation $c(\alpha)=\frac13\cos\alpha$. Any other extremal continuum of the gives problem is an image of $\mathscr E$ under the mapping $z\to e^{i\gamma}z+C$ ($\gamma$ is a real and $C$ is a complex constant). One finds the value of the required maximum. The paper contains a brief exposition of the proof of this result.
English version:
Journal of Soviet Mathematics, 1978, Volume 10, Issue 2, Pages 241–256
DOI: https://doi.org/10.1007/BF01566605
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: G. V. Kuz'mina, “Maximum of the fourth diameter in the family of continua with prescribed capacity”, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Zap. Nauchn. Sem. LOMI, 59, "Nauka", Leningrad. Otdel., Leningrad, 1976, 60–80; J. Soviet Math., 10:2 (1978), 241–256
Citation in format AMSBIB
\Bibitem{Kuz76}
\by G.~V.~Kuz'mina
\paper Maximum of the fourth diameter in the family of continua with prescribed capacity
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~9
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 59
\pages 60--80
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=444939}
\zmath{https://zbmath.org/?q=an:0389.30019|0347.30015}
\transl
\jour J. Soviet Math.
\yr 1978
\vol 10
\issue 2
\pages 241--256
\crossref{https://doi.org/10.1007/BF01566605}
Linking options:
  • https://www.mathnet.ru/eng/znsl2085
  • https://www.mathnet.ru/eng/znsl/v59/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024