|
Zapiski Nauchnykh Seminarov LOMI, 1976, Volume 59, Pages 31–59
(Mi znsl2084)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
A priori estimates for solutions of nonlinear second-order elliptic equations
A. V. Ivanov
Abstract:
We consider classes of elliptic equations of the form $F(x,u,\Delta u,D^2u)=0$ for the solutions of which one establishes local and global a priori estimates for $|D^2u|=(\sum_{ij}u^2_{x_ix_j})^{1/2}$ and $|D^3u|=(\sum_{ijk}u^2_{x_ix_jx_k})^{1/2}$. In particular, one investigates the Monge-Ampere equation $\det\|u_{x_ix_j}\|=f(x)$, $f(x)>0$ and for its convex solutions one constructs a local $|D^2u|$ and a global estimate for $\|D^3u\|_{L^2}$ and a local estimate for.
Citation:
A. V. Ivanov, “A priori estimates for solutions of nonlinear second-order elliptic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Zap. Nauchn. Sem. LOMI, 59, "Nauka", Leningrad. Otdel., Leningrad, 1976, 31–59; J. Soviet Math., 10:2 (1978), 217–240
Linking options:
https://www.mathnet.ru/eng/znsl2084 https://www.mathnet.ru/eng/znsl/v59/p31
|
Statistics & downloads: |
Abstract page: | 181 | Full-text PDF : | 67 |
|